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DATABASE  DEFINITION 
 
In a loose sense, almost anything that stores data can be called a database.  So a spreadsheet, or a 

simple text file, or the cards in a Rolodex, or even a handwritten list, can be called a database.  However, 
we are concerned here with computer software that manages the addition, modification, deletion and 
retrieval of data from specially formatted computer files.  Such software is often called a Relational 
Database Management System (RDBMS) and that will be the subject of the remainder of this tutorial. 

 
 
RELATIONAL  DATABASE  HISTORY 
 
The structure of a relational database is quite specific.  Data is contained in one or more tables (the 

purists call them relations).  A table consists of rows (also known as tuples or records), each of which 
contains columns (also called attributes or fields).  Within any one table, all rows must contain the same 
columns; that is, every table has a uniform structure; if any row contains a Zipcode column, every row 
will contain a Zipcode column. 

 
In the late 1960’s, a mathematician and computer scientist at IBM, Dr. E. F. (Ted) Codd, developed 

the principles of what we now call relational databases, based on mathematical set theory.  He 
constructed a consistent logical framework and a sort of calculus that would insure the integrity of stored 
data.  In other words, he effectively said, If you structure data in accordance with these rules, 
and if you operate on the data within these constraints, your data will be guaranteed to 
remain consistent and certain operations will always work.  That’s not to say that violating 
these rules necessarily prevents you from getting correct results in a particular instance, it’s more like 
saying, all bets are off. 

 
 
DESIGNING  A  DATABASE 
 
It is tempting for many people who have used spreadsheet software like Microsoft Excel to think of 

a relational database as just a more powerful version of a spreadsheet, or at least their mindset is to think 
in terms of "cells" and formulas.  This kind of thinking will prevent these people from getting the results 
they want, because the underlying concept of relational databases is utterly different. 

 
The database management approach is to organize raw data in accordance with very strict rules, and 

to use concepts like queries and views to retrieve, manipulate and combine the data as desired.  
Calculations based on the raw data are performed at the time they are needed for display or printing, 
not stored in the database, as is done in spreadsheets.  Much of this retrieval and manipulation is 
accomplished with a standard language called SQL (which originally stood for Structured Query 
Language, but is now considered just the name of the language).  Nearly all RDBMSs use SQL, but 
there are small variations in syntax from one to another. 

 
Dr. Codd’s relational database model made it possible to handle extremely large amounts of data 

very efficiently and reliably.  Without it, we would not have the airline reservation systems, search 
engines, online businesses, or any of the other database applications that we now take for granted. 



So let's begin to get specific.  What kinds of rules should be applied, and how should a database project 
be started? 

 
Some of the fundamental rules are: 
 
1. Every row in a table must be unique.  This is a requirement because if the relational calculus 

is to be reliable, we must be able to identify a specific row, for example, to be deleted.  We 
cannot rely on the sequence of the rows; indeed, relational database theory specifies that there 
is no defined order of data in a table.  This usually requires that each table has a primary key 
field or combination of fields that can never be duplicated within that table.  The database 
engine itself normally guarantees that this state will be maintained; for example, if you try to 
enter a row of data with a primary key value that duplicates an existing value, the database 
engine will present an error message, and will not add the new data. 

 
2. Data should be "atomic".  That means that data should be stored in its most basic, indivisible 

form; for example, avoid storing an address as a single data element, with street number, 
street name, apartment number, city, state and zip code.  Each of these are separate pieces of 
data and should be  stored in separate columns. 

 
3. Data should be single valued.  That means that you should not have a single field that 

contains "children's names," for example.  If you need to join children's names to their 
parents' records, do it with relationships between tables, not by entering multiple names into 
one field in the parents’ record. 

 
4. Avoid data redundancy.  Ideally, a piece of data should be stored in only one place, so that  

its value can never be ambiguous.  When a value is needed, refer to the one place where it is 
stored. 

 
5. Avoid storing "dependent data."  Only raw data should be stored in tables.  If a value is 

dependent on (can be calculated from) other data, the calculation should be performed by the 
database application at the time the results are needed. 

 
Experienced database developers sometimes "bend" some of these rules for a particular application, 

usually for reasons related to performance.  But when they do so, it should be with a full understanding 
of what consequences may result from their departure from the theoretical rules expressed by E. F. Codd 
and Chris Date.  Beginners who break these rules do so at their own peril. 

 
A common mistake made by beginners is to start with visualizing a data entry screen, or a report 

format.  While those are important parts of an application that will need to be designed later, it is counter 
productive to begin from those ideas.  Instead, it is the data, itself, that should drive the design. 

 
Every database application can be considered to be a model of some segment of the real world.  No 

matter what your project may be, the most efficient design process is to begin by clearly identifying 
what is to be included in your data model.  This should be done in writing to sharpen your model and 
permit your returning to the model description later, if you need to review or modify it. 

 
This data model should clearly identify the entities that will be part of your data model and their 

relationships to each other.  It could be, for example, that you want to model the assignment of students 
to classes, or the status of sales orders that are received by your business.  By pausing to really define 



the extent and scope of your database, you will find it easier to carry out the next step: identifying the 
entities in your model.  An entity is a class of “things”, such as persons, objects, events, documents, 
transactions, etc.  Generally, every entity that you identify will become a table in your schema, which is 
what we call the description of your database structure—its tables and columns and relationships. 

 
So, long before you even boot up your computer, you should be writing down on a piece of paper 

such thoughts as: 
 
 
    Model:   schedules of classes for students, with grades. 
 
    Entities: Students 
  Classes 
  Teachers ? 
 
    Relationships: a student can attend many classes, 
   a class may have many students, 
   a class must have one and only one teacher. 
 
 
Often you will not know all the details at first, so it is a good idea to include items with question 

marks, as I did Teachers in this example.  That will remind you to review such questions, as your project 
is being refined. 

 
Having done this, you can then begin to establish the columns required for each table.  Here’s where 

the disciplined approach really matters.  For each table, representing an entity, you should specify all the 
attributes or characteristics of that entity that you intend to store in the database.  Initially, the only 
consideration should be that it is clearly an attribute, or feature, of that entity.  Later, we will take a 
second pass as we normalize each table, which we will explain further in this tutorial. 

 
 
ENTITIES  AND  ATTRIBUTES 
 
To illustrate this process, consider the entity Students.  Each row in the table will represent a student.  

What attributes does any one student have?  Obvious ones will include First Name, Middle Name, Last 
Name, Home Address, City, State, Zip, Home Phone, Mobile Phone, Email Address, maybe Date of 
Birth, Student Number, etc.  You might have just written down Name, Address, etc., but the very first 
consideration when we begin to normalize the table will be whether every column is "atomic".  That 
means that a column should consist of data that cannot be divided into smaller parts; so we never want 
to store the street address and the city, state and zipcode in one column or field!  Likewise with the 
name.  An inexperienced person might think that grades might be attributes of a student, but they are 
not, for several reasons.  First of all, they don’t define a student, like the student’s name or address.  
They are merely values associated with a student who has completed certain classes.  It makes no sense 
to say that the student can be described, in part, by “B, A, C+, B-, and A-“.  Grades are meaningful only 
in connection with a student and a class.  We will see later how this data is stored and related to the 
student and to the class. 

 
Next in our example, consider the entity Classes.  Each row in the table will represent a class.  What 

attributes does any one class have?  Certainly that will include the Catalog Number, Teacher and Room 



Number.  You might think that the Course Name and Course Description, Year and Semester, and 
maybe even the list of students would be included, but you'd be wrong.  Assuming that this database is 
going to be useful for more than one class conducted in one semester, this analysis should lead you to 
recognize that you need another entity; a Class is just an instance of a Course, which might be offered at 
several different time slots with different teachers, and might be offered semester after semester.  So 
now you should see that Courses is another entity, one that we failed to anticipate when we first wrote 
down the list of entities.  You should go back and add it now!  Course Name and Description are 
attributes of a Course, not of a Class.  Thus we need another table.  We have already recognized that 
Students is an entity of its own.  We will soon see how we link these entities together. 

 
 
NORMALIZATION 
 
Normalization is the process of refining the structure of columns within a table, in accordance with 

specific rules devised by E. F. Codd and published in the seminal textbook, An Introduction To 
Database Systems by Chris Date (now in its 8th edition!).  The purpose of normalization is to reduce 
known data structure issues by applying rules that will methodically eliminate common problems.  The 
rules are expressed as definitions of several successive forms in which data tables may be defined.  
These are known as First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form 
(3NF) and Boyce-Codd Normal Form (BCNF).  There are actually two more, 4NF and 5NF, but these 
are not often used.  There is controversy within the developers community as to how far along the 
normalization forms it is necessary to go, but probably most developers would recommend going at least 
to 2NF, and many would go further. 

 
So what do these normal forms require?  To satisfy the condition of being in 1NF, a table must 

contain scalar values only and must not contain any duplicate rows.  Scalar values means essentially the 
same thing as “atomic” values; that is, a particular column value in a particular row of a table can have 
only one piece of data, not a series of values like, say, an array.  At first, such a requirement may seem 
restrictive, but the Codd Relational Model is built on such rules.  There are common techniques for 
handling the practical situations where one might want, for example, to store an array of values, but if 
the normal form rules are violated, the mathematics on which the database engine is built cannot be 
guaranteed to produce consistent results. 

 
So, let’s take on 2NF: a table is in 2NF if and only if it is already in 1NF and every nonkey attribute 

is irreducibly dependent on the primary key.  Yes, that’s a little daunting, but all it means is that all the 
columns are scalar, or “atomic,” and all columns except key fields are really dependent on the primary 
key, or to say it another way, each column provides a fact about the primary key, like in a customer 
table, with a customer ID number as the primary key, every other column that is not a foreign key 
provides some description of that customer, such as the address or credit rating.  No column should 
provide data, for example, about the customer’s activity, such as the customer’s latest order number, 
since that information depends on the customer’s ID and on other facts, such as when orders were 
placed. 

 
Then, to be in 3NF, a table must be in 2NF, and all columns depend directly on the primary key. 

Tables violate the 3NF if one column depends at least partly on another column, which in turn depends 
on the primary key (a transitive dependency).   



That’s already more than you’ll probably need to know about normalization, at least for a long time!  
The most understandable tutorial on normalization that I have found is at this URL: 

http://www.phlonx.com/resources/nf3/ 
 
The point I’d like to make is that there’s a lot of heavy duty logic behind the way you should assign 

columns to tables.  It’s not a hand-waving, fuzzy kind of “this is the way I’d do it” or “this looks right to 
me” kind of thing.  Or certainly it should not be! 

 
 
PRIMARY  KEYS 
 
Before going further, let us consider the primary key that every relational table must have.  If an 

entity has a natural attribute that is unique to every instance of that entity, it may be used as the primary 
key field, but there are many pitfalls to be aware of.  If the entity is a person, for example, a primary key 
that has been often used is the person's Social Security Number. 

 
 There can be problems with this, though.  Some people don't have SSN's (foreign visitors, babies), 

and (believe it or not!) some people have more than one SSN!  There have also been a small number of 
duplicate SSN's assigned mistakenly by the Social Security Administration!  Furthermore, you may not 
know a person’s SSN at the time you want to enter their record in the database, and you simply cannot 
enter a new record with a blank primary key. 

 
  A primary key may consist of a combination of more than one attribute, which is known as a 

composite primary key.  So you might use the combination of the last 4 digits of a bank account number, 
the full check number, and the date of the check, as the primary key for a table containing check 
transactions, which would be highly unlikely to produce duplicate rows. 

 
There are formal ways to select the primary key for a table, involving a concept called candidate 

keys, but for this introductory tutorial, it's unnecessary to belabor the point further. 
 
Sometimes (often) it will be simpler to assign an independent field as the primary key, which bears 

no relation to any natural attribute of the entity.  An advantage of doing this is that nearly every database 
engine provides a data type that will automatically assign and manage numbers, to guarantee that every 
new row will have a unique identifier.  By simply defining such a field and declaring it to be 
Autonumber or Auto-increment type, the database will manage the primary key for you.  In this case, 
the database user should ordinarily never be concerned with what the value is, and usually never even 
has visibility of what the values are.  The values are used by the database engine itself and by the 
application programs that manipulate the data.  Indeed, allowing database users to change the value of a 
primary key is a sure road to database corruption. 



 
FOREIGN  KEYS 
 
In order to relate data in a row of one table with data that may be stored in one or more rows of 

another table, one table must have a primary key field and the other table must have a foreign key field of 
the same data type.  A simple example would be music CD’s and the tracks of music on them.  Since a 
CD usually has many tracks (songs) recorded on it, this requires a one-to-many relationship between the 
two tables, tableCDs and tableTracks.  The usual way to depict such a relationship is an Entity-
Relationship Diagram, or ERD, like this: 

 
 
 
 
 
 
 
Each table has its own primary key field (they do not need to have the same field name), which 

insures that every row in that table can be uniquely identified.  The table on the “many” side of the 
relationship has a foreign key field that links each track to the CD it’s on.  Most database engines 
provide the ability to enforce referential integrity, as Microsoft Access calls it, by automatically 
“cascading” delete and update transactions to keep the two tables consistent.  That means that if you try 
to delete a row in tableCDs which has “child” records in tableTracks (that is, there are rows in 
tableTracks that have the foreign key value of the tableCDs row that is going to be deleted), the 
database engine will ask the user if they wish to also delete these dependent rows in tableTracks.  Unless 
the user agrees, the record will not be deleted from tableCDs.  Similarly, if the user attempts to update 
(edit) the ID field in tableCDs, the database engine will ask the user if they wish to have all the 
dependent rows in tableTracks updated to correspond to the new value.  Otherwise, the data in the two 
tables would be inconsistent, with “orphan” records whose foreign key values don’t match a row in the 
other table. 

 
This primary key / foreign key relationship is such a fundamental part of relational databases that I 

will present the same concept in another way, by showing sample data records in the two tables I 
previously described: 

 
   tableCDs: 

ID Album Title Artist Name Year Released 
1625 Courage Randy Gavin 2004 
1626 Ain’t It Hot The Wheels 2004 
1627 Changes A-Comin’ Bunny Perkins 2005 

 
 
      tableTracks: 
 
 
 
 
 
 

ID CD_ID Song Title Length 
72013 1627 Why Am I Here? 4:15 
72014 1627 No, You Can’t 3:55 
72015 1626 Solitude 6:20 
72016 1627 You Got That Right! 4:45 

tableCDs 
  ID  (PK) 
  Album Title 
  Artist Name 
  Year Released 

tableTracks 
  ID  (PK) 
  CD_ID  (FK) 
  Song Title 
  Length 



tableStudents 
  studentID  (PK) 
  LastName 
  FirstName 
  . . . 

tableStud-Class 
  studentID  (FK) 
  classID  (FK) 
  DateEnrolled 
  Grade 

tableClasses 
  classID  (PK) 
  courseID  (FK) 
  StartDate 
  Teacher 

tableCourses 
  courseID  (PK) 
  courseNumber 
  Description 
  Credits 

You can see that each row in the second table has a value in the foreign key field (CD_ID) that 
matches a value in the primary key field (ID) of the first table, making it possible to determine what 
album each song is on. 

 
The above example is called a one-to-many relationship.  One CD can have many tracks.  In 

tableCDs, a value for the (primary key) ID column can appear only once; that is, the ID column is 
unique.  In tableTracks, there can be many duplicate values in the (foreign key) CD_ID column. 

 
Another kind of relationship is a many-to-many relationship.  Going back to our Students, Classes 

and Courses example, a Student may attend many classes and a Class will have many students.  Such 
relationships are common, but to represent them in a relational database, you need a third table to link 
the primary keys of the other two tables.  For Students and Classes, it would look something like this: 

 
 
 
 
 
 
 
 
The table with 2 foreign keys in it is the third table and it represents the occurrence of a student 

enrolled in a course.  This is where the date and grade are stored. 
 
This is how relational databases can be so flexible.  There is no limit to how many classes a student 

may take, nor how many students can enroll in a class. 
 

 
RDBMS  SCHEMA 
 
We call the description of the tables and fields of a database and their relationships, a schema.  It 

may be presented as a list of fields associated with each table, or as an ER Diagram, or in the case of 
some large and complex databases, a formal structure embedded in the database itself.  For further 
information on RDBMS schemas, I recommend starting with Wikipedia’s page at 
http://en.wikipedia.org/wiki/Database_schema 

 
A more detailed (and complex) tutorial can be found at 

http://www.databaseanswers.org/tutorial4_db_schema/index.htm 
 
 
 


