
                                                                                                                                                                         

Language Pros Cons

Python
        

• Extremely popular
• Lots of community 

packages
• Lots of training material
• Virtually all platforms and 

32/64-bit
• 100% open source
• Actively developed and 

evolving language
• Most taught language in 

colleges and universities 
(recently)

• No unified UI development 
environment

• No native table/database 
layer

• Dependency nightmare
• No compilation error 

detection
• No easy single packaging
• Your code can easily be 

reverse-engineered
• Indentation-based logic
• One of the slowest in 

runtime
• Really different approach to

linking (importing) external 
modules

• Case-sensitive language

Java         • Virtually all platforms and 
32/64-bit

• Lots of training material
• Still popular

• No native table/database 
layer

• Your code can easily be 
reverse-engineered 
(decompilation)

• Case-sensitive language
• For newer versions, 

commercial runtime license 
fees are required and could
become expensive

• OpenJDK  is open source, 
but not the official 
implementation by Oracle

JavaScript (Node)         • Extremely popular
• Lots of community 

packages
• Lots of training material
• Actively developed and 

evolving language
• Very fast execution

• No native table/database 
layer

• Dependency nightmare
• No compilation error 

detection
• Source code deployment
• Web backend mainly, 

desktop solutions requires 
solution like electronjs

• Case-sensitive language

C# and VB.NET        • Popular
• Rich development 

environment
• Lots of training material
• Desktop and web solutions
• Virtually all platforms and 

32/64-bit with reduced 
functionality

• Controlled by single vendor,
Microsoft (which terminated
VB, Visual FoxPro)

• No native table/database 
layer

• Your code can easily be 
reverse-engineered 
(decompilation)

• Overly complicated class 
structure and API

• Case-sensitive language
• Not 100% open source

PHP • Easy syntax
• Lots of training material
• 100% open source
• Still in the top 10 most 

popular languages

• No compilation error 
detection

• Source code deployment
• Web backend only, not for 

desktop solutions
• On the decline in popularity
• Case-sensitive language



Language Pros Cons

C++         • Fast Runtime
• Virtually all platforms and 

32/64-bit

• No native table/database 
layer

• Extremely verbose 
language

• Really difficult to debug
• Case-sensitive language

Ruby         • Nice syntax • On the decline in popularity
• Web backend only, not for 

desktop solutions
• Slow runtime
• Case-sensitive language

xHabour • Virtually the same syntax 
as Harbour, XBase++ and 
VFP

• Virtually all platforms and 
32/64-bit

• Hard to reverse engineer 
(no practical decompilation)

• Virtually the same syntax 
as Harbour, and VFP

• Fast runtime
• Multiple database engine 

native support, like DBF, 
Advantage Database 
(commercial)

• Case insensitive language

• No visible active 
development

• Single vendor
• Harbour already integrated 

all of its features

XBase++ • Direct support from vendor 
(Alaska-Software)

• Hard to reverse engineer 
(no practical decompilation)

• Virtually the same syntax 
as Harbour, and VFP

• Very good web protocol 
support

• Fast runtime
• Multiple database engine 

native support, like DBF, 
PostgreSQL, Advantage 
Database (commercial)

• Case insensitive language

• Proprietary, not open 
source

• Windows 32-bit only
• Limited interoperability
• Yearly license fee
• Vaporware regarding their 

VFP support
• Weak UI design tools

X#         • Possible solution for .NET 
developers to add xBase 
language syntax

• .NET runtime
• Your code can easily be 

reverse-engineered 
(decompilation)

• Case-sensitive language
• Still under development
• Commercial license may be 

required

VFP • Built-in fantastic IDE, 
including forms designed 
with visual inheritance and 
report writer

• Excellent for creating 
desktop Windows 32-bit 
apps

• Very rich language, 
everything but the kitchen 
sink approach

• Extremely stable
• SQL syntax support on DBF

• End of Life by Microsoft
• Your code can easily be 

reverse-engineered 
(decompilation) (unless 
commercial branding)

• Windows 32-bit only, 
limited to 2GB table size

• Closed code, and non-free 
development environment



Language Pros Cons

• Extremely fast for table 
queries and inserts (was 
the foundation of the MS 
SQL 7+ engine)

• In-memory tables (cursors)
• Case insensitive language

Harbour

• 100% Open Source and 
free

• Virtually all platforms and 
32/64-bit

• Hard to reverse engineer 
(no practical decompilation)

• Virtually the same syntax 
as xHarbour, Xbase++, X#,
and VFP

• Fast runtime
• Multiple database engine 

native support, like DBF, 
SQLite, Advantage 
Database (commercial)

• Case insensitive language
• In 64-bit, will break the 

2GB table limit
• Support for in-memory 

tables
• FastCGI framework for web

development

• No vibrant core developer 
community

• No unified UI development 
environment

• Lack of clear language 
documentation (getting 
better)

• Fragmented core code 
(branching)

• No local table SQL syntax 
support

• No easy build process

                                                                                                                                                                         


