
ptg999

Chapter 6

258	 Chapter 6  Using Forms and Events

Monitoring

In this second example, we have designed a hidden form with a Timer event that polls a
table and advises users when the system will shut down for maintenance. If the time has
elapsed, then the routine will close all the user’s forms and reports and quit the application.
An administrator can use the table depicted in Figure 6-30 to set a shutdown time and post
a user message.

Figure 6-30  The Active flag indicates the event is scheduled for activation.

This application will have a hidden form that is launched upon startup and monitors the
table for warning messages. Users are then be given a number of warnings, after which the
application will close.

To implement this, you need the following code at startup:

Sub modTimer_LaunchMonitor()
 DoCmd.Echo False
 DoCmd.OpenForm "frmSilent"
 Forms("frmSilent").Visible = False
 DoCmd.Echo True
End Sub

The form shown in Figure 6-31 and the code that follows it incorporates a Dismiss button
that allows the user to ignore the warning until they have completed their work (as long
as they don’t ignore it for too long).

Figure 6-31  The user can press the Dismiss button to hide the window.

From the Library of John Clark

ptg999

Ch
ap
te
r 6

	 Interacting with Records on a Form	 259

Option Compare Database
Option Explicit
Dim lngCriticalWarnings As Long ' flags critical warnings to a user
Const lngMaxWarnings = 2
Dim blUnloading As Boolean

Private Sub cmdDismiss_Click()
 ' hide the form
 Me.Visible = False
End Sub
Private Sub Form_Load()
 lngCriticalWarnings = 0
 blUnloading = False
End Sub

Private Sub Form_Timer()
 Dim db As Database
 Dim rst As Recordset
 Dim rstLog As Recordset
 Set db = CurrentDb
 Dim strSQL As String
 ' find any critical shutdown messages that apply
 strSQL = "SELECT * FROM tblCloseDown " & _
 " WHERE CriticalTime > dateadd('n',-30,time())" & _
 " AND Active = True"

 Set rst = db.OpenRecordset(strSQL, dbOpenDynaset)
 If Not rst.EOF Then
 lngCriticalWarnings = lngCriticalWarnings + 1
 If lngCriticalWarnings > lngMaxWarnings Then
 ShutDown
 Else
 ' warn the user
 Me.Visible = True
 Me.txtWarning = rst!WarningMessage
 ' this stays on the screen until the user clicks dismiss
 End If
 End If
 rst.Close
End Sub

Sub ShutDown()
 ' shut down the application
 ' close any forms
 On Error Resume Next
 Dim lngfrmCount As Long
 Dim lngrptCount As Long
 Dim lngCount As Long
 lngfrmCount = Forms.Count
 lngrptCount = Reports.Count
 ' close all forms

From the Library of John Clark

ptg999

Chapter 6

260	 Chapter 6  Using Forms and Events

 For lngCount = 0 To lngfrmCount - 1
 DoCmd.SelectObject acForm, Forms(lngCount).Name
 DoCmd.Close
 Next
 ' close all reports
 For lngCount = 0 To lngrptCount - 1
 DoCmd.SelectObject acReport, Reports(lngCount).Name
 DoCmd.Close
 Next
 blUnloading = True
 DoCmd.Quit
End Sub

Private Sub Form_Unload(Cancel As Integer)
 If Not blUnloading Then
 Me.Visible = False
 Cancel = True
 End If
End Sub

If you are using hidden forms, it’s worthwhile considering what happens to these forms if
a user attempts to leave the application. In the sample menu form frmFormsMenu, the fol-
lowing code is added to the Close event to tidy up the hidden form:

Private Sub Form_Close()
 ' close frmSilent if it is loaded
 If CurrentProject.AllForms("frmSilent").IsLoaded Then
 Forms("frmSilent").ShutDown
 End If
End Sub

The Mouse Events
Mouse events occur for the form, the different form sections, and the controls on the form
that can be used to control how a user interacts with the data in the form. With these
events, you can determine the mouse position, whether the Shift key is being held down,
and which mouse button is pressed. There is also a MouseWheel event on the form.

The frmMouseEvents form, which can be found in the companion content that accom-
panies this chapter, can be used to investigate these events and display the correspond-
ing values in screen controls for the mouse position and state of the buttons, as shown in
Figure 6-32.

From the Library of John Clark

