Timer Comparison Tests — Version 1.6
Over the years, | have used various functions to measure time intervals: Timer, GetSystemTime, GetTickCount.

Each of these can give times to millisecond precision though | normally round to 2 d.p. (centiseconds).
This is because each function is based on the system clock which is normally updated 64 times per second —
approximately every 0.0156 seconds

When | started my series of speed comparison tests, | initially used the GetSystemTime function.
However, some occasional inconsistencies led me to revert to the very simple Timer function.

Recently | was alerted to the timeGetTime API by Utter Access member ADezii with these comments taken from
the Access 2000 Developers Handbook pg 1135-1136:

If you're interested in measuring elapsed times in your Access Application, you're much better off using the
timeGetTime() APl Function instead of the Timer() VBA Function. There are 4 major reasons for this decision:

1. timeGetTime() is more accurate. The Timer() Function measure time in 'seconds' since Midnight in a single-
precision floating-point value, and is not terribly accurate. timeGetTime() returns the number of 'milliseconds’ that
have elapsed since Windows has started and is very accurate.

2. timeGetTime() runs longer without 'rolling over'. Timer() rolls over every 24 hours. timeGetTime() keeps on
ticking for up to 49 days before it resets the returned tick count to 0.

3. Calling timeGetTime() is significantly faster than calling Timer().

4. Calling timeGetTime() is no more complex than calling Timer(), once you've included the proper API declaration

Part of this comment is no longer accurate in that the Timer function can measure to milliseconds.
However, as | had never used the timeGetTime API, | decided to compare the results obtained using each of the
methods using two simple tests:

e Looping through a simple square root calculation repeatedly (20000000 times)

e Measuring the time interval after a specified time delay setup using the Sleep API (1.575 s)

| also added two more items to the timer comparison tests - Stopwatch class (again based on the system timer)
and a High Resolution Timer (which has a resolution of 1 microsecond or less).
Many thanks to ADezii for this additional code

A quick summary of the 6 methods used in these tests:

e Timer VBA — number of seconds since midnight but to millisecond resolution
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/timer-function

¢ GetSystemTime API — current system date and time expressed in Coordinated Universal Time (UTC)
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemtime

e GetTickCount APl — number of milliseconds that have elapsed since the system was started (up to 49.7
days) https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-gettickcount

e timeGetTime APl —same calculation as GetTickCount but using a different API
https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegettime

e Stopwatch class API - a set of methods and properties to accurately measure elapsed time.
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=netframework-4.7.2

e High Resolution Timer API — able to measure to less than one microsecond resolution
https://docs.microsoft.com/en-us/windows/desktop/winmsg/about-timers

Other timer methods also exist that have not been used here. For example:
e Multimedia Timer - used to schedule periodic timer events for multimedia applications
https://docs.microsoft.com/en-us/windows/desktop/multimedia/multimedia-timers
o timeGetSystemTime API —time elapsed in milliseconds since the system was started so very similar to
timeGetTime API
https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegetsystemtime

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/timer-function
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemtime
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-gettickcount
https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegettime
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=netframework-4.7.2
https://docs.microsoft.com/en-us/windows/desktop/winmsg/about-timers
https://docs.microsoft.com/en-us/windows/desktop/multimedia/multimedia-timers
https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegetsystemtime

Obviously, as with any timer tests, other factors such as background windows processes, and overall CPU load will
lead to some natural variation. To minimise the effects of those, | avoided running any other applications at the
same time and ran each test 10 times. Furthermore, the test order was randomised each time ... just in case. The
average times were calculated along with the minimum/maximum times and standard deviation for each test.

As most of the methods are based on the system clock, | expected the results to be similar in each case.

However, it seemed reasonable that certain functions would be more efficient to process

For these tests, the main requirement is certainly NOT to determine which gives the smallest time.
Here the aim is to achieve consistency so that repeated tests should provide a small standard deviation

1. Test Results
These are the average results for test A — calculation loop (old desktop PC with 32-bit Access & 4GB RAM):

Average Results

Workstation Test Type Run Count Loop Count Min Time Max Time Std Dev Average Time
COLIN-PC A GetSystemTime 20 20000000 1.781 1.797 0.004 1.788
COLIN-PC A GetTickCount 20 20000000 1.766 ALty 0.009 1.786
COLIN-PC A High Resolution Timer 20 20000000 1.763 1.783 0.005 1.770 =
COLIN-PC A Stopwatch Class 20 20000000 1.742 1.767 0.004 1.756
COLIN-PC A TimeGetTime 20 20000000 1.773 1.789 0.004 1.785
COLIN-PC A Timer 20 20000000 1.891 1.898 0.003 1.893

-
Record: M 1of6 FH X Mo Filter | Search

As expected, the average times for each method were mostly similar except for the Timer method which
gave noticeably larger values than all other methods.

The Timer method also had the least variation and GetTickCount the most, but the variation was small for
each of the methods

For comparison, | repeated the tests on a laptop with 64-bit Access & 8GB RAM:

Average Results

Workstation Test Test Type Run Count Loop Count Min Time Max T Time Std Dev Average Time
COLIN-LAPTOP A GetSystemTime 20 20000000 1.141 1.391 0.076 1.252
COLIN-LAPTOP A GetTickCount 20 20000000 1.078 1.360 0.087 1.219
COLIN-LAPTOP A High Resolution Timer 20 20000000 1.023 1.309 0.090 1.176 =
COLIN-LAPTOP A Stopwatch Class 20 20000000 1.080 1.469 0.091 1.174
COLIN-LAPTOP A TimeGetTime 20 20000000 1.125 1.328 0.061 1.1%6
COLIN-LAPTOP A Timer 20 20000000 1.047 1.281 0.056 alls il

-
Record: M 1ofé P X Mo Filter | Search

As you would expect, each of the times are faster. The variation was again fairly small for each method.
Once again, the Timer method had least variation but, on this workstation, its average time was fastest!
Perhaps surprisingly, the High Resolution Timer and Stopwatch methods had the largest variation

Finally, | used a Windows tablet with 2GB RAM. Clearly, with that specification its only just adequate for
running Access and struggles with any complex processing.

Average Results

Workstation Test Test Type Run Count Loop Count Min Time Std Dev Average Time
COLIN-TABLET A GetSystemTime 20 20000000 5.328 6.039 0.163 5.578
COLIN-TABLET A GetTickCount 20 20000000 5.531 5.797 0.079 5.647
COLIN-TABLET A High Resolution Timer 20 20000000 5.369 5.750 0.110 5.579 =
COLIN-TABLET A Stopwatch Class 20 20000000 5.288 5.820 0.129 5.580
COLIN-TABLET A TimeGetTime 20 20000000 5.479 5.758 0.080 5.572
COLIN-TABLET A Timer 20 20000000 5.461 5.844 0.099 5.665

-
Recard: M 1of 6 L & ba Filker | Search

The times were inevitably a LOT slower but each method gave similar average times
In this case, TimeGetTime and GetTickCount were most consistent whereas GetSystemTime and Stopwatch
had the largest variation

Overall, there was little to distinguish any of the methods on any of the workstations tested

The second set of tests were done with a specified time delay of 1.575s. For these tests, we would expect
each value to be slightly larger than the time delay to allow for processing the timer functions. There should
also be less variation between the different PCs

These are the average results for test B — on the desktop PC with 4GB RAM:

Average Results

Workstation Test Type Run Count Delay Time MinTime MaxTime Std Dev Average Time
COLIN-PC B GetSystemTime 20 1.575 1.578 1.602 0.008 1.584
COLIN-PC B GetTickCount 20 1.575 1.562 1.610 0.012 1.584
COLIN-PC B High Resolution Timer 20 1.575 1.575 1.590 0.005 1.579 =
COLIN-PC B Stopwatch Class 20 1.575 1.575 1.603 0.010 1.583
COLIN-PC B TimeGetTime 20 1.575 1.575 1.594 0.008 1.582
COLIN-PC B Timer 20 1.575 1.570 1.602 0.009 1.581

E
Record: M ¢ 1of6 | b M { No Filter | Search

The High Resolution Timer was the most consistent and had smaller times than the other methods
suggesting it may be the fastest to process time values

The GetTickCount method had the largest variation

All the other functions were similar both in terms of variation and average times obtained.

There were a couple of ‘impossible’ values less than 1.575 seconds for both GetTickCount & Timer methods.

Here are the average results using the laptop with 8GB RAM:

Average Results

Workstation Test Type Run Count Delay Time MinTime MaxTime Std Dev Average Time
COLIN-LAPTOP B GetSystemTime 20 1.575 1.578 1.594 0.006 1.592
COLIN-LAPTOP B GetTickCount 20 1.575 1.578 1.609 0.009 1.5%0
COLIN-LAPTOP B High Resolution Timer 20 1.575 1.576 1.590 0.004 1.583 =
COLIN-LAPTOP B Stopwatch Class 20 1.575 1.578 1.596 0.007 1.5%0
COLIN-LAPTOP B TimeGetTime 20 1.575 1.578 1.596 0.007 1.590
COLIN-LAPTOP B Timer 20 1.575 1.578 1.602 0.008 1.590

-
Record: M 1of & L) {x Mo Filter | Search

Similar results once again with the High Resolution Timer being most consistent and with the fastest times.
Once again, the GetTickCount method had the largest variation
The other methods were broadly comparable both in terms of variation and average times obtained.

The results using the 2GB tablet were

Average Results

Workstation Test Test Type Run Count Delay Time MinTime MaxTime Std Dev Average Time
COLIN-TABLET B GetSystemTime 20 1.575 1.570 1.578 0.003 1.577
COLIN-TABLET B GetTickCount 20 1.575 1.562 1.579 0.007 1.574
COLIN-TABLET B High Resolution Timer 20 1.575 1.575 1.576 0.000 1.575 =
COLIN-TABLET B Stopwatch Class 20 1.575 1.575 1.577 0.001 1.576
COLIN-TABLET B TimeGetTime 20 1.575 1.575 1.577 0.000 1.576
COLIN-TABLET B Timer 20 1.575 1.570 1.578 0.004 1.575

-
Record: 4 4 1of6 b » { Mo Filter | Search

Once again, GetTickCount produced the largest variation.
In this test Stopwatch class, timeGetTime and the High Resolution Timer were all extremely consistent.
Three of the methods had at least one ‘impossible’ result less than the time delay of 1.575 s

Conclusions

Overall, I would suggest that all methods are reasonably reliable with minimal variation.

Two of the simplest methods (Timer and timeGetTime) were just as consistent and at times better than the
other approaches

Stopwatch class works well but requires additional code compared to the Timer or TimeGetTime methods
GetTickCount is satisfactory but perhaps not as reliable as other methods

GetSystemTime uses a combination of the Timer function & SystemTime API. As it is no better than other
methods, using a combined approach such as this, is probably not the best solution.

The high resolution timer operates with a level of precision far greater than is needed for speed comparison
tests. However, the standard deviation is far smaller than using the other methods which seems to make it
more reliable in my view. The second test using a specified time delay also seems to indicate the test itself
runs faster so is likely to be closer to the actual time taken as distinct from that measured.

Even so, for most of the tests, the variation between methods wasn’t significant enough to make any of the
approaches stand out as a clear ‘winner’.

As a result, | suggest using either Timer or TimeGetTime unless you really need more precision than
milliseconds

Bearing in mind that the Timer function is based on the time elapsed since midnight whereas timeGetTime
runs for 49 days before resetting, timeGetTime should be used if the timing tests are likely to cross midnight
or last longer than 24 hours.

However, for smaller time intervals on a reasonably powerful PC, | don’t think there is much advantage in

one method compared to the other. In any case, the code based on the Timer function allows for a ‘round
midnight’ error

NOTE: there are other methods that | haven’t yet tested successfully including the multimedia timer.

3. Using the test application
The main form allows you to run each test individually or to run all tests in turn.
If you choose the latter the test order will be randomised each time

Timer Comparison Tests systeminfo [Quit

These tests compare the times calculated to do the same task using several different methods.

1. Timer VBA function

2. GetSystemTime API function
3. GetTickCount API function
4. timeGetTime API function

5. StopWatch Class

6. High Resolution Timer

The purpose is to compare the results and determine whether it matters which process is used
Consistency is the main requirement here so results should have a small standard deviation

Test Calculation » MNumber of loops 20000000
1. Timer Time Taken (s) 1.898
2. GetSystemTime Time Taken (s) 1.789
3. GetTickCount Time Taken (s) 1.797
4. TimeGetTime Time Taken (s) 1.792
5. Stopwatch class Time Taken (s) 1.762
6. High Resolution Timer Time Taken (s) 1.8111278

Ve Ezis i Run All Tests

Save Results Clear Times

Timer Comparison Tests Version 1.6 27/02/2019

The buttons at the bottom of the form allow you to save or view the results, clear the recorded times or
cancel the tests. You can also view the code used for each test by selecting from the combo box:

start timer ~
StartTime = TimeGetTime(} 'time in milliseconds

Select Case strTest
Case "A" 'Calculation
For Q=1 To LC 'loop count
dblsgr = Sgr(Q)
Next
Case "B" "specified delay
Sleep 1000 * TD ‘time delay
End Select

'stop timer
EndTime = TimeGetTime() “time in milliseconds

Me.txtTime4 = (EndTime - StartTime) / 1000

View Code TimeGetTime v Hide Code

Click the System Info button to obtain information about your workstation. This can be useful for
benchmarking. The data collection will take a few seconds with data mostly obtained using WMI.

System Information
Computer Name COLIN-PC

Processor Intel(R) Core(TM) i5-2310 CPU @ 2.90GHz (x64-based)
Installed RAM 4 GB total ; 2.92 GB usable

Operating System Microsoft Windows 10 Pro 10.0.17763 32-bit
Access Version Access 2010 SP2 14.0.7195 32-bit

This information is READ ONLY

Timer Comparison Tests Version 1.2 24/02/2019

Clicking View Results on the main form takes you to the Results form

'mer Comparison Test Results View Crosstab . View Summary . Close .

Test Results Test |Calculation o Filter by Test Type || %

Run No

241 COLIN-PC A Timer 1 20000000 1.891
242 COLIN-PC A GetSystemTime 1 20000000 1.789
243 COLIN-PC A GetTickCount 1 20000000 1.797
244 COLIN-PC A TimeGetTime 1 20000000 1.784
245 COLIN-PC A Stopwatch Class 1 20000000 1.756
246 COLIN-PC A High Resolution Timer 1 20000000 1.771267
247 COLIN-PC A Timer 2 20000000 1.891
248 COLIN-PC A GetSystemTime 2 20000000 1789
249 COLIN-PC A GetTickCount 2 20000000 1.797
250 COLIN-PC A TimeGetTime 2 20000000 1784
251 COLIN-PC A Stopwatch Class 2 20000000 1.756
252 COLIN-PC A High Resolution Timer 2 20000000 1.769762
253 COLIN-PC A Timer 3 20000000 1.898
254 COLIN-PC A GetSystemTime 3 20000000 1781
255 COLIN-PC A GetTickCount 3 20000000 1.782 -
Record: 4 10f120 » MWk £ Mo Filter | Search
Average Results
Workstation Test Test Type Run Count Loop Count MinTime MaxTime Std Dev Average Time
COLIN-PC A Timer 20 20000000 1.891 1898 0.003 1893
COLIN-PC A GetSystemTime 20 20000000 1.781 1.797 0.004 1.788
COLIN-PC A GetTickCount 20 20000000 1.766 1797 0.009 1786 L
COLIN-PC A TimeGetTime 20 20000000 1773 1789 0.004 1785 1
COLIN-PC A Stopwatch Class 20 20000000 1.742 1.767 0.004 1.756
COLIN-PC A High Resolution Timer 20 20000000 1763 1783 0.005 1770
Record: 14 10f 6 L & o Filter | Search

Timer Comparison Tests Version 1.6 27/02/2019

The lower part of the form shows the average results discussed earlier in this document.
The top part shows the individual results for each test run.

You can filter these for an individual test type if you wish.

Click the View Crosstab button to view the results for each test run in crosstab format:

mer Comparison Test Results T . View Summary . Cloze .
y &

Test Results Test |Timed Delay ~ H

Get Time gh e

Delay System i Get Stopwatch Resolution =

Time Timer Time Time Class
COLIN-PC B 1 1.575 157 1.578 1.578 1.575 1.576 1.575535
COLIN-PC B 2 1575 1578 1578 1578 1576 1576 1575588
COLIN-PC B 3 1.575 1578 1578 1563 1575 1575 1575055
COLIN-PC B 4 1.575 157 1578 1.579 1.576 1576 1.575109
COLIN-PC B 5 1.575 1.578 1578 1.578 1.576 1.575 1.575811
COLIN-PC B 6 1575 1578 1578 1578 1576 1575 1575044
COLIN-PC B 7 1.575 1578 1578 1578 1575 1575 157538
COLIN-PC B 8 1.575 157 1578 1.578 1.576 1.576 1.575061
COLIN-PC B E] 1575 1578 1578 1562 1575 1576 1575246
COLIN-PC B 10 1575 1578 1578 1578 1576 1575 1575097
COLIN-PC B 11 1.575 1.602 1.586 1.578 1.579 1.601 1.580437
COLIN-PC B 12 1.575 1.586 1.594 1.594 1.58 1.595 1.589855
COLIN-PC B 13 1575 1586 1.602 1594 1578 1578 1577036
COLIN-PC B 14 1.575 1578 1578 1578 1.594 159 1.586109
COLIN-PC B 15 1.575 1.586 1.584 1.593 1.585 1.593 1584484 v
Record: 4 1of20 L] £ Mo Filter | Search

Click the View Summary button to view summary reports with a chart. For example:

Timer Tests (A) - Calculation - Average Results Timer Tests (A) - Results by Test Run
Computerinti; CompamHame COLNEC G G Time Hien
procasscr P — worntein Tea LR L Smem Tk G Smpwsh Remlion
Ra 4 GBrora; 252 68 ussbie
coNPt A 1 20000 1831 178 177 17 116 LT
Operating Sysem Microsoft Windows 10 Pro 10.0.17763 3
comnec A 2 00000 1891 A7 1 A7 1% L7698
AcemVerson Accews 2010 21407195 32-bi
o A s o000 1898 178 17 1% A7 LTSS
Worktation Test Type o loop Mimimum Mamimum Stendard Awrage COMPC A 4 2000000 1898 1789 L7817 1755 1703
Cont Cosnt Tie(s) Timels) Devation Timels)
coLMPC A 5 2000000 1898 1789 17E2 178 1756 L7831
counee Teme ™ w0000 1891 1% 0003 1ew
o i cOLNPC A 6 20000 181 178 17E 1785 1756 L76ess8
GatTeicout 1 omoow 178 177 008 1786 COLMPC A 7 20000000 1838 178 L7917 177 17T0ms
TimeGecTime n 20000000 1m 1789 0.004 1785 COLN-PC A 8 20000000 1891 1789 1781 1788 1788 1.769621
Stopwretch Closs W 0000 172 1767 0004 175
T CONPC A 9 20000 LES 1709 L7E1 176 176 LTen
HgnReoltonTmer 20 0000000 1763 178 0005 1700
COLNPC A 10 0000 1891 178 177 178 177 Lmen
ER] : ot A 11 eoowa 1 me L% 17 me 17w
COLMPC A 12 20000000 1891 1789 L79 1788 L1756 176951
coLMPC A 13 2000000 1891 1781 1797 1785 17 L7
cOLNPC A 14 200D 181 177 L7 178 176 LTS
conec A 15 2000000 1891 178 1797 4786 1786 LTSSy
z CONPC A 16 2000 1891 178 L7 175 12 L7808
) comE A 15 meow 1 1w Lm 1m s Lmos
H vt A s mooee e im um um ww e
cOLMPC A 20 2000000 1891 1780 1766 A7 1787 176307
Bverage Times(s) 1893 L1788 L786 1785 L7 1770184

Timer
GetsystemTime
GetT ckCourt
Timed etTime
Stopwatch Class
HighResoluticn
Timer

Test Type:

B AverageTima e OhaTime Osiey

rr—rn roge 1tz e poge2cf2

Clear existing data
To remove all existing data and start afresh, run 3 queries:
e gryEmptySpeedTests / gryEmptySysinfo / qryClearComputerinfo

Test Code
The main code used for each timing test is:

ID [Test Timer Code

API etc

1 Timer sngStart = Timer 'start timer
Select Case strTest
Case "A" 'Calculation
For Q=1To LC 'loop count
dblSqgr = Sqr(Q)
Next

Case "B" 'specified delay
Sleep 1000 * TD 'time delay

End Select
sngEnd = Timer 'stop timer

‘check for ‘round midnight issues’
If sngEnd<sngStart Then sngEnd=sngEnd+86400

Me.txtTimel = Round((sngEnd - sngStart), 3)

VBA Timer function

2 GetSystemTime sngStart = GetCurrentSystemTime 'start timer

Select Case strTest
Case "A" 'Calculation
For Q=1To LC 'loop count
dblSqr = Sgr(Q)
Next

Case "B" 'specified delay
Sleep 1000 * TD 'time delay

End Select

'stop timer
sngEnd = GetCurrentSystemTime

‘check for ‘round midnight issues’
If sngEnd<sngStart Then sngEnd=sngEnd+86400

Me.txtTime2 = Round((sngEnd - sngStart), 3)

#If VBA7 Then
Declare PtrSafe Sub GetSystemTime Lib
"kernel32" (IpSystemTime As SYSTEMTIME)
#Else
Declare Sub GetSystemTime Lib "kernel32"
(IpSystemTime As SYSTEMTIME)
#End If

Function GetCurrentSystemTime() As Double
‘get time to milliseconds
Dim tSystem As SYSTEMTIME
GetSystemTime tSystem

GetCurrentSystemTime = (1000 * Int(Timer)
+ tSystem.wMilliseconds) / 1000

End Function

3 GetTickCount StartTime = GetTickCount 'start timer - milliseconds
Select Case strTest
Case "A" 'Calculation
For Q=1To LC 'loop count
dbliSgr = Sqr(Q)
Next

Case "B" 'specified delay
Sleep 1000 * TD 'time delay

End Select
EndTime = GetTickCount ‘stop timer -'milliseconds

Me.txtTime3 = (EndTime - StartTime) / 1000

#If VBA7 Then
Declare PtrSafe Function GetTickCount Lib
"kernel32" () As Long
#Else
Declare Function GetTickCount Lib
"kernel32" () As Long
#End If

TimeGetTime

StartTime = TimeGetTime()'start timer -milliseconds
Select Case strTest
Case "A" 'Calculation
For Q=1To LC 'loop count
dblSqgr = Sqr(Q)
Next

Case "B" 'specified delay
Sleep 1000 * TD 'time delay

End Select
EndTime = TimeGetTime() 'stop timer - milliseconds

Me.txtTime4 = (EndTime - StartTime) / 1000

#If VBA7 Then
Public Declare PtrSafe Function TimeGetTime Lib
"winmm.dlI" Alias "timeGetTime" () As Long
#Else
Public Declare Function TimeGetTime Lib
"winmm.dIl" Alias "timeGetTime" () As Long
HEnd If

Stopwatch class

'Create a New Instance of the Class
Dim stpw As New StopWatch

'start timer
If Not stpw.IsRunning Then stpw.StartTimer

Select Case strTest
Case "A" 'Calculation
ForQ=1To LC 'loop count
dblSqr = Sqr(Q)
Next

Case "B" 'specified delay
Sleep 1000 * TD 'time delay

End Select
stpw.StopTimer 'stop timer

Me.txtTime5 = stpw.GetSecondsElapsed

Code in Stopwatch class module

High Resolution
Timer

'start timer
getFrequency curPerSec
getTime curStartTime

Select Case strTest

Case "A"
ForQ=1To LC
dblSqr =Sqr(Q)
Next
Case "B"

Sleep 1000 * TD
End Select

'stop timer
getTime curEndTime

DoCmd.Hourglass False
'calculate elapsed time

Me.txtTime6 = (curEndTime - curStartTime) /
curPerSec

#1f VBA7 Then
Declare PtrSafe Function getFrequency Lib
"kernel32" Alias "QueryPerformanceFrequency"
(ByRef Frequency As Currency) As Long
Declare PtrSafe Function getTime Lib "kernel32"
Alias "QueryPerformanceCounter" (ByRef Counter
As Currency) As Long

#Else

Declare Function getFrequency Lib "kernel32"
Alias "QueryPerformanceFrequency" (ByRef
Frequency As Currency) As Long

Declare Function getTime Lib "kernel32" Alias
"QueryPerformanceCounter" (ByRef Counter As
Currency) As Long
HEnd If

6. Some Useful links

timeGetTime
https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegettime
https://bytes.com/topic/access/insights/618175-timegettime-vs-timer

StopWatchClass
https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.stopwatch?redirectedfrom=MSDN&view=netframework-4.7.2

General
The following quote is based on an article at:
https://stackoverflow.com/questions/18346879/timer-accuracy-c-clock-vs-winapis-gpc-or-timegettime

Timer(), GetTickCount and timeGetTime() are derived from a calibrated hardware clock. Resolution is not
great, they are driven by the clock tick interrupt which ticks by default 64 times per second or once every
15.625 msec. You can use timeBeginPeriod() to drive that down to 1.0 msec. Accuracy is very good, the clock
is calibrated from a NTP server, you can usually count on it not being off more than a second over a month.

The high resolution timer is based on the Query Performance Counter APl and has a much higher resolution,
always better than one microsecond and as little as half a nanosecond on some machines. It however has
poor accuracy, the clock source is a frequency picked up from the chipset somewhere. It is not calibrated and
has typical electronic tolerances. Use it only to time short intervals.

Latency is the most important factor when you deal with timing. You have no use for a highly accurate timing
source if you can't read it fast enough. That's always an issue when you run code in user mode on a protected
mode operating system which always has code that runs with higher priority than your code. Device drivers
are trouble-makers, video and audio drivers in particular. Your code is also subjected to being swapped out of
RAM, requiring a page-fault to get loaded back. On a heavily loaded machine, not being able to run your code
for hundreds of milliseconds is not unusual. You'll need to factor this failure mode into your design

Colin Riddington Mendip Data Systems 26/02/2019

https://docs.microsoft.com/en-us/windows/desktop/api/timeapi/nf-timeapi-timegettime
https://bytes.com/topic/access/insights/618175-timegettime-vs-timer
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?redirectedfrom=MSDN&view=netframework-4.7.2
https://stackoverflow.com/questions/18346879/timer-accuracy-c-clock-vs-winapis-qpc-or-timegettime

	Timer Comparison Tests – Version 1.6
	1. Test Results
	2. Conclusions
	3. Using the test application
	4. Clear existing data
	5. Test Code
	6. Some Useful links

