
Tutorial for Begginers: How To Create Your Access Tables

By Greg Krajenta (Kraj)
Contributors:

WindSailor
Len Boorman

 Introduction

1. Understanding Your Needs
2. The Thought Process: Relational Databases and You
3. Normalization

a. 1st Normal Form
b. 2nd Normal Form
c. 3rd Normal Form
d. Other Normal Forms

4. Table Definition Tips
a. Primary Key
b. Field Attributes
c. Naming Conventions

Introduction

Welcome to the Beginner’s Guide to Creating Access Tables. This is intended for anyone
who is just starting to work with Access, whether you’re a student, a self-taught dabbler,
or a professional who’s just been handed a database assignment regardless of the fact you
don’t work with databases.

The purpose of this guide is to communicate the fundamental concepts you need in order
to build a strong foundation for your database so you don’t tear your hair out later. And
the intention is communicate in plain English, so you don’t have to already be an expert
to understand what people are talking about. This is a living document, intended to
improve and grow with time. Please leave any suggestions, additions and feedback in the
thread. If a section is confusing or feels incomplete, tell me. I do, however, want to limit
the scope of this so it does not become overwhelming. I’d rather see major topics get
their own tutorial.

From time to time I’ll expand on a topic via a *Note. I provide this information because I
think it is useful, but set it aside because it is not essential and should not be focused on if
it is confusing. Feel free to skip them entirely. Now, then… let’s get started.

1. Understanding Your Needs

The first step in creating a database is to know what you need your database to do. This is
the most important step but it is also a broader topic than I want to or can cover here
thoroughly. In brief, you should have a clear idea of what problem you are trying to solve

or what role the database will have in your activity. If you are making the database for
another person(s), be sure you know what it is they want and how they want to do it.
Understanding how your database will be used is key to organizing it in a way that makes
sense. Don’t be afraid to sit down with someone who will be using your database and ask
them to walk you through what they want. The better you understand what you’re being
asked to do, the better chance you’ll create a database that’s exactly what they want. If
you need help in this area, get a hold of some introductory material on Systems Analysis
and Design. A good place to start would be understanding 1-to-1, 1-to-Many and Many-
to-Many relationships, as well as entities and attributes. You should also have a
reasonable idea of what Access is capable of doing (*If you are unfamiliar with the basics
of Access’ capabilities, you should start with basic tutorials or obtain a beginner’s guide
of some sort). Once you have these factors in mind, you are ready to grab a pad of paper
and a pencil.

*Note: Most texts on Systems Analysis and Design strongly advocate using data
modeling conventions. In my experience, mapping your entities, attributes and
relationships can be useful, especially if your database is complex. Mine tend to be small
and simple, so I rarely need to do more than define my tables. My college classes pushed
data flow diagrams as a means to model a database. Attention students: data flow
diagrams are great if you are writing lots of code, but if your database does not include
lots of code-based processing they are utterly worthless. Eschew them whenever possible.
You hear it here first.

2. The Thought Process: Relational Databases and You

To effectively design a table in Access, you have to know how the tables work or you’ll
get nowhere. We’ll start with a definition of “relational database”:

“A relational database is a collection of data items organized
as a set of formally-described tables from which data can be
accessed or reassembled in many different ways without having
to reorganize the database tables.”

Helpful, right? Simply put, a relational database is a bunch of tables with
information in them. Sometimes the same information is stored in more than
one table, and those tables are related to each other because of that common
information.

An example – Let’s say you create a database that stores a name, home
address, and car(s) owned. You make two tables, one for the address and
one for the cars. They might look something like this:

Table 1
Name Address City State Zip
Eric 1234 Elm St. Chicago IL 60601
Stan 5678 Oak St. Chicago IL 60602

Table 2
Name CarModel Mileage
Eric Testarosa 20,000
Eric S-575 10,000
Stan S-575 5,000

Since “Eric” appears in both tables, the database will match “Testarosa” and
“S-575” with “1234 Elm, etc.” based on the common element, “Eric” and
vice versa.

Additionally, you may have a table that stores information about cars. It
might look like this:

Table 3
CarModel Make
Testarosa Ferrari
S-575 Lotus
Accord Honda

In this example, Table 2 is used to join the information in Table 3 with
Table 1. You now know that there is a Ferrari with 20,000 miles on it parked
at 1234 Elm St. in Chicago because you know Eric lives at 1234 Elm St.
(Table 1) and he has a Testarosa with 20,000 miles on it (Table 2), which is
made by Ferrari (Table 3). The connections between the tables are known as
“relationships”.

3. Normalization

You may be asking yourself at this time, “Why can’t you just put Ferrari and
Lotus in the same table with the Eric?” At first glance it seems like a good
idea that makes things a whole lot simpler and, when you’re dealing with
very small sets of data and very simple databases, it is. (If this is the case,
though, then an Excel spreadsheet might be a better option for you.)
However, when you start working with large amounts of information,
complex data or queries, many problems arise if you do not follow a certain
standard for efficient and stable table design. This standard is called
“normalization” or “normal form”. There are many online resources
available that discuss normalization in great detail, such as Wikipedia, so I
will not do that. I will instead provide the essential basics.

3.a. 1st Normal Form

A database is said to be in 1st Normal Form when no records have repeating
data groups. This means two things: each field should contain one unique
value (ie., a ‘CarModel’ field should not contain the data “Ferrari, Lotus”);

and each record should not have more than one field to store the same kind
of data (ie., the records in Table 1 should not have fields such as
‘CarModel1’, ‘CarModel2’, etc.).

There are two reasons to eliminate repeating data groups. First, if you wish
to search your database for a certain data, it is much easier to do so when the
data is in a field by itself. Addresses are a prime example of this. If your
address field says, “1234 Elm Street, Chicago, IL, 60601, USA), a simple
query for everyone in Chicago will not find this record.

The second reason for eliminating repeating data groups is efficient use of
space. Continuing with the address example, say we want to store both a
home and business address for each person. If we put both addresses in the
same record, we might have the following fields: Number, Street,
St/Ave/Blvd/etc, City, State, ZIP, Country and BusinessNumber,
BusinessStreet, BusinessSt/Ave/Blvd/etc, BusinessCity, BusinessState,
BusinessZIP, BusinessCountry. If every entry in your database utilizes all
those fields then you’re fine, but if some entries only have one address your
wasted space will add up very quickly. See section 4.b. for more on this.

To solve repeating data groups, make a new table with the repeating fields
and an appropriate field from the first table (usually the primary key).

3.b. 2nd Normal Form

A database is said to be in 2nd Normal Form if it is already in 1st Normal
Form and all the fields in a record are fully dependant on the primary key.
This applies only to tables with a composite (also sometimes called a
concatenated) primary key. (*See section 4.a. for more on primary keys.)

In the above example, Table 2 has a composite key; both the “Name” and
“Car” fields combine to make a single key that identifies a unique record.
Any other fields in a table with a composite key should be related to all the
fields that make up the key and not just some of them. The “Mileage” field
belongs in Table 2 because Mileage is dependent on the combination of
model and owner, ie., only Eric’s Lotus has 10,000 miles on it – not Eric,
not all Lotuses. On the other hand, if we put the “Make” field from Table 3
into Table 2 it would violate 2nd Normal Form because all Testarosas are
made by Ferrari; it doesn’t matter who owns it. Therefore, “Make” is
dependent on “CarModel” but not on “Name”, so “Make” should not be in a
table where “Name” is part of the key.

There are several reasons for eliminating partial dependencies. Primarily,
they cause data to be repeated and stored more than is necessary. Adding
“Make” to Table 2 means every time you enter a Testarosa, you must also
indicate it is a Ferrari. It would be much easier and efficient to reference

another table that says any Testarosa is a Ferrari. Partial dependencies also
make your data more vulnerable. If you have to enter Ferrari every time you
enter Testarosa, you run an increased risk of making an error and indicating
the wrong make for the Testarosa. Finally, if the data changes in one place it
must be changed everywhere. If, for example, Ferrari decided to sell the
brand name and design of Testarosa to Honda, you would have to go
through your records and change every instance of Ferrari to Honda
wherever it appears with Testarosa. If you put “Make” into its own table, as
is the case in Table 3 as I’ve shown it, you would now only have to change
Ferrari to Honda in one place. This makes updating your database easier and
less vulnerable to mistakes. Admittedly, the example of changing the make
of a car is far-fetched, but what if instead of make and model you have
customer and address? Now you have a field that will frequently need to be
changed.

To solve dependency problems, make a new table with the partially
dependant field in it and the part of the key from the previous table on which
that field is dependant.

3.c. 3rd Normal Form

A database is said to be in 3rd Normal Form if it is already in 2nd Normal
Form and all the fields in a record are only dependant on the primary key. In
the car example, let’s say I added the field “Country” to Table 3 so it looked
like this:

Table 3
CarModel Make Country
Testarosa Ferrari Italy
S-575 Lotus Britain
Accord Honda Japan

This setup violates 3rd Normal Form because “Country” is dependant on
“Make”, not “CarModel” since the company based in Italy is Ferrari, not
Testarosa, etc. Non-key dependencies have all the same negative impact on
your database as the partial-key dependencies we eliminated in 2nd Normal
Form.

To eliminate non-key dependencies, create a new table with the two fields
that have the dependency you identified.

*Note: While the steps of normalization are referred to as rules, it is worth
noting that they are not completely inflexible. Sometimes, for example, a
partial dependency takes up a few bytes of wasted space per record but is
such a small portion of the whole record that it is actually more efficient to
keep it there instead of creating a new table. This is because the processing

time it takes for the database to access the extra table is greater than the
processing time it takes to access the blank fields of the records. However,
this is both a rare and controversial situation which you should not find
yourself in unless you are the administrator of a very large and complicated
database (in which case, if you are reading this you may be in over your
head). So, I would not worry about this, just be aware of it.

The next point applies to a table at any stage of Normal Form, although it is
most often included with 3rd Normal Form: your tables should not have any
calculated fields. For example, if you have a record that stores a car dealer’s
order, it might include Dealership Name, Car Ordered, Quantity Ordered
and Car Price (yes, including Car Price violates 1st Normal Form, but I’m
trying to make a point here) and Total Price, which is the Car Price
multiplied by the Quantity. The record actually should not include Total
Price, because that amount can be calculated at the time you run your query.
It is more efficient for a database to perform a calculation than it is to store
data. In short, anything that can be calculated, summarized, etc., should not
be stored as its own data in a field.

3.d. Other Normal Forms

1st, 2nd, and 3rd Normal Forms are all you are ever likely to need in order to
have an efficient, stable database. However, databases that are very large or
complex may benefit from 4th, 5th, 6th, or various other Normal Forms. I will
not go into these in detail as many resources are available to explain them in
greater detail and, honestly, I don’t know much about them.

4. Table Definition Tips

Now that you have all of your tables written out in 3rd Normal Form, you’re
ready to build them in Access. Remember, at this point all your work so far
should be on paper. I will assume you’ve taken my earlier advice and have
some knowledge of Access database basics, or at the very least the
instruction manual that can guide you through the steps of building the
tables. Therefore, in these sections I will not go into great detail but instead
provide some useful pointers.

4.a. Primary Key

Often, beginner literature will instruct you to set your primary key to
whatever field uniquely identifies the record. So, in Table 1 the primary key
would be “Name”. This is not exactly wrong, but it is a bad idea. One reason
is that data often changes, and when that data is a primary key it makes it
much more difficult to make changes correctly. Also, if you delete a record
(accidentally or purposefully) which contains a field that is used as a

primary key in another record, that other record either gets deleted as well or
will cause errors. You will save yourself a lot of headache if every table uses
an autonumber field as its primary key.

A term that is commonly used but is not apparently obvious what it means is
“composite key” or “concatenated key”. Simply put, a composite key is a
primary key made up of more than one field. They are most often used in a
table that joins two other tables that would otherwise not be related together,
like Table 2.

4.b. Field Attributes

In a database, when you define a table you tell it what fields to have, what
kind of data each field will store, and how much data each field will store.
MS Access defaults to 50 characters of text. Whether or not you put data
into this space, the record holds onto it. This means that, in the address
example, if you do not utilize all the fields available you will be storing
hundreds of characters worth of empty space in every record. This makes
your database unnecessarily larger and slower. It is a good idea to adjust
record sizes to fit your data (for example, in an address if you use only the
two-letter abbreviation for a state, make the “State” field two characters).
Also, if you are storing numbers that you intend on performing calculations
on, you need to change the data type from Text to Number.

4.c. Naming Conventions

In brief, it is a good idea to give all your fields, tables, queries, etc.,
descriptive and consistent names. This will help you stay organized as
you’re designing as well as fix problems when you go back 6 months later
and don’t remember exactly what you did. It’s up to you what to use, as long
as it is consistent but there are generally-accepted guidelines available to
reference.

4.d. Relationships

Once your tables are defined, you must define the relationships. You must
do this before any data is in the tables. Relationships tell the database which
fields are the same in each table. For example, “Name” appears in Table 1
and Table 2 but the database does not know the data is the same until you
define a relationship. Defining relationships helps keep the database stable
by preventing errors and makes designing forms and queries easier by
automatically linking appropriate fields together. When you define a
relationship, I suggest checking “Enforce referential integrity”, which
basically means “don’t let me do anything that would screw up this data”.

